3H-Pyrido[6,7-b]-1,3,4-triazepines from 5-Aryltetrazoles

V. V. Nikulin, T. V. Artamonova, and G. I. Koldobskii
St. Petersburg State Technological Institute, St.Petersburg, 190013 Russia

Received December 20, 2002

The study of thermal transformation of N -imidoyltetrazoles generated under conditions of phasetransfer catalysis from 5 -substituted tetrazoles and N-arylbenzimidoyl chlorides resulted in development of a new preparation method for previously unavailable $3 \mathrm{H}-1,3,4$-benzotriazepines [1-7].

We have shown by numerous examples that the method is of general character and can be used for building up complex heterocyclic systems including several triazepine rings [5, 6]. However up till now
remained unclear whether this approach is suitable for triazepines synthesis with triazepine ring fused not to a benzene but to pyridine ring.

We report below on the new data showing the possibility to prepare by this procedure triazepines fused with a puridine ring. We found that thermolysis of N-imidoyltetrazoles obtained under conditions of the phase-transfer catalysis from 5-aryltetrazoles and N-(m-pyridyl)benzimidoyl chloride gave rise to previously unknown $3 H$-pyrido[6,7-b]-1,3,4-triazepines.

3H-Pyrido[6,7-b]-1,3,4-triazepines (Ia-d), as also $3 H-1,3,4$-benzotriazepines [2,5], are stable against bases but are easily hydrolyzed in water solutions of mineral acids.

At treatment of reagent Ia with methyl iodide in the presence of potassium tert-butylate arises the corresponding N -methyl derivative.

2,5-Diphenyl-3H-pyrido[6,7-b]-1,3,4-triazepine (Ia). To a mixture of 0.01 mol of 5 -phenyltetrazole, 0.001 mol of tetrabutylammonium bromide, 10 ml of 10% water solution of NaOH , and 30 ml of chloroform was added at $20^{\circ} \mathrm{C}$ while stirring within 30 min 0.01 mol of N -(m-pyridyl)benzimidolyl chloride in 10 ml of chloroform. The reaction mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$, the phases were separated, the organic layer was washed with 1% water solution of NaOH , with water ($2-10 \mathrm{ml}$), and dried with magnesium sulfate. The chloroform was removed in a vacuum, to the solid residue was added 20 ml of toluene, and it was heated for 3 h to $110^{\circ} \mathrm{C}$. Then the toluene was removed in a vacuum, the residue was recrystallized from acetonitrile. Yield 1.35 g (57\%). After additional purification by column chromatography on silica gel (eluent carbon tetra-
chloride-ethyl acetate, $3: 2$) mp 205- $208^{\circ} \mathrm{C}$. IR spectrum, cm-1: 926, 984, 1001, 1026, 1055, 1076, 1121, 1167.

5-(4-Bromophenyl)-2-phenyl-3H-pyrido-[6,7-b]-1,3,4-triazepine (Ib). Yield 17%. mp $221-222^{\circ} \mathrm{CC}$. IR spectrum, $\mathrm{cm}^{1}{ }^{1:} 935,950,990,1020,1035,1075$, 1120, 1170, 1180, 1230, 1270, 1290, 1325, 1390, 1450, 1475, 1495, 1565, 1600, 1635, 2865, 2935, 3085, 3335. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $7.3-8.4 \mathrm{~m}(12 \mathrm{H}$ arom) $9.5 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 60.49 ; H 3.27; N 14.87. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrN}_{4}$. Calculated, \%: C 60.48; H 3.45; N 14.85.

2-Phenyl-5-(4-chlorophenyl)-3H-pyrido-[6,7-b]-1,3,4-triazepine (Ic). Yield 31%. mp 204-208 ${ }^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 925,950,990,1010,1020,1035$, $1060,1080,1095,1120,1170,1185,1240,1275$, $1295,1330,1400,1450,1475,1495,1560,1585$, 1605, 1640, 2865, 2935, 3085, 3350. ${ }^{1}$ H NMR spectrum (DMSO- d_{6}), δ, ppm: $7.3-8.4 \mathrm{~m}$ (12 H arom), 9.0 s (1H, NH). Found, \%: C 68.63; H 4.05; N 16.72. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{4}$. Calculated, \%: C 68.57; H 3.91; N 16.84.

2-(4-Tolyl)-5-phenyl-3H-pyrido[6,7-b]-1,3,4-triazepine (Id). Yield 25%. mp $212-213^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 930,950,985,1010,1025,1040,1060$, 1085, 1095, 1120, 1170, 1180, 1200, 1220, 1235, $1280,1295,1320,1330,1400,1415,1455,1475$, $1505,1525,1565,1605,1735,2870,2940,3045$, $3065,3350 .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $2.4 \mathrm{~s}\left(3 \mathrm{H}^{\prime} \mathrm{CH}_{3}\right), 7.2-8.2 \mathrm{~m}(12 \mathrm{H}$ arom $), 9.4 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{NH})$. Found, \%: C 77.01; H 5.27; N 17.93. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4}$. Calculated, \%: C 76.92; H 5.13; N 17.95.

Acid hydrolysis of 2,5-diphenyl-3H-pyrido-[6,7-b]-1,3,4-triazepinea (Ia). A mixture of 1.2 mmol of triazepine $\mathbf{I a}, 10 \mathrm{ml}$ of 17% hydrochloric acid was heated for 2 h to $100^{\circ} \mathrm{C}$, cooled to $5^{\circ} \mathrm{C}$, the separated precipitate of benzoic acid was filtered off to obtain $0.058 \mathrm{~g}(40 \%)$ of benzoic acid, $\mathrm{mp} 123^{\circ} \mathrm{C}$. To the filtrate was added 10% water solution of NaOH till $\mathrm{pH} 10-12$, the separated precipitate was filtered off, washed with water (10 ml), and dried in air to obtain 0.212 g (89%) of 3-amino-2-benzylpyridine, mp $99-101^{\circ} \mathrm{C}$ (from hexane) [8].

2,5-Dipheny-1-methylpyrido[6,7-b]-1,3,4-triazepine. To a solution of 1.7 mmol of reagent Ia in 30 ml of anhydrous tetrahydrofuran was added 2 mmol of potassium tert-butylate. The reaction mixture was stirred for 30 min at $20^{\circ} \mathrm{C}, 2.5 \mathrm{mmol}$ of methyl iodide was added thereto. The stirring was continued for 2 h at $20^{\circ} \mathrm{C}, 150 \mathrm{ml}$ of water was added, and the separated precipitate was filtered off. Yield $0.334 \mathrm{~g}(63 \%), \mathrm{mp} 198-200^{\circ} \mathrm{C}$. IR spectrum, cm^{-1} : 920, 935, 950, 975, 990, 1010, 1025, 1045, 1060, $1080,1090,1140,1165,1180,1190,1240,1260$, $1280,1315,1330,1440,1450,1475,1495,1550$, 1580, 1595, 2835, 2870, 2930, 2960, 3005, 3035, 3070. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO-d6), δ, ppm: 3.15 s $\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.39-8.45 \mathrm{~m}$ (13 H arom). Found, $\%$: C 77.09; H 5.25; N 17.80. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4}$. Calculated, \%: C 76.92; H 5.13; N 17.95.

IR spectra were recorded on spectrometer UR-20 from KBr pellets, ${ }^{1} \mathrm{H}$ NMR spectra were registered on spectrometer Bruker AC-200. The purity and homogeneity of compounds obtained was tested by TLC on Silufol UV-254 plates, eluent mixture of carbon tetrachloride and ethyl acetate, 3:2. The study was carried out under financial support of the Ministry of Education of Russian Federation (Federal Program "Integratsiya", grant no. I 0667).

REFERENCES

1. Koldobskii, G.I., Nikonova, I.V., Zhivich, A.B., Ostrovskii, V.A., and Poplavskii, V.S., Zh. Obshch. Khim., 1992, vol. 62, p. 194.
2. Ivanova, S.E. and Koldobskii, G.I., Khim. Geterotsikl. Soed., 1993, p. 907.
3. Koldobskii, G., Ivanova, S., Nikonova, I., Zhivich, A., and Ostrovskii, V., Acta Chem. Scand., 1994, vol. 48, p. 596.
4. Koldobskii, G.I. and Ivanova, S.E., Zh. Org. Khim., 1995, vol. 31, p. 1601.
5. Artamonova, T.V. and Koldobskii, G.I., Zh. Org. Khim., 1997, vol. 33, p. 1850.
6. Artamonova, T.V. and Koldobskii, G.I., Zh. Org. Khim., 2000, vol. 36, p. 1749.
7. Morgenstern, O., Pharmazie, 2000, vol. 55, p. 871.
8. Littell, R. and Allen, D.S., J. Med. Chem., 1965, vol. 8, p. 722.
